Перевод: с русского на английский

с английского на русский

ни один... не способен

  • 1 ни один ... не способен

    Русско-английский научно-технический словарь переводчика > ни один ... не способен

  • 2 дупликатные гены, ни один из которых не способен полностью проявиться в гетерозиготе

    Универсальный русско-английский словарь > дупликатные гены, ни один из которых не способен полностью проявиться в гетерозиготе

  • 3 ни один из (...) не способен

    Mathematics: it is beyond the capabilities of any (...)

    Универсальный русско-английский словарь > ни один из (...) не способен

  • 4 ни один из не способен

    Mathematics: (...) it is beyond the capabilities of any (...)

    Универсальный русско-английский словарь > ни один из не способен

  • 5 не может

    Русско-английский научно-технический словарь переводчика > не может

  • 6 всемогущество

    (один из атрибутов Бога, означает, что Бог способен осуществить в мире всё, что Он хочет Сам, что в действиях тварных существ согласно с Его волей и соответствует избираемым Им Самим путям и средствам) omnipotence, omnipotency, almightiness

    Русско-английский словарь религиозной лексики > всемогущество

  • 7 реентерабельная программа

    1. renterable program
    2. Reenterable program

     

    реентерабельная программа
    Программа, один и тот же экземпляр которой в оперативной памяти способен выполняться многократно, причем так, что каждое выполнение может начинаться в любой момент по отношению к другому выполнению.
    [ ГОСТ 19781-90]

    Тематики

    • обеспеч. систем обраб. информ. программное

    EN

    11. Реентерабельная программа

    Reenterable program

    Программа, один и тот же экземпляр которой в оперативной памяти способен выполняться многократно, причем так, что каждое выполнение может начинаться в любой момент по отношению к другому выполнению

    Источник: ГОСТ 19781-90: Обеспечение систем обработки информации программное. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > реентерабельная программа

  • 8 трехфазный источник бесперебойного питания (ИБП)

    1. three-phase UPS

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > трехфазный источник бесперебойного питания (ИБП)

  • 9 импульсное перенапряжение

    1. surge voltage
    2. surge overvoltage
    3. surge
    4. spike
    5. pulse surge
    6. power surge
    7. peak overvoltage
    8. high-voltage surge
    9. electrical surge
    10. damaging transient
    11. damaging surge

     

    импульсное перенапряжение
    В настоящее время в различных литературных источниках для описания процесса резкого повышения напряжения используются следующие термины:

    • перенапряжение,
    • временное перенапряжение,
    • импульс напряжения,
    • импульсная электромагнитная помеха,
    • микросекундная импульсная помеха.

    Мы в своей работе будем использовать термин « импульсное перенапряжение», понимая под ним резкое изменение напряжения с последующим восстановлением
    амплитуды напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд вызываемое коммутационными процессами в электрической сети или молниевыми разрядами
    .
    В соответствии с классификацией электромагнитных помех [ ГОСТ Р 51317.2.5-2000] указанные помехи относятся к кондуктивным высокочастотным переходным электромагнитным апериодическим помехам.
    [Техническая коллекция Schneider Electric. Выпуск № 24. Рекомендации по защите низковольтного электрооборудования от импульсных перенапряжений]

    EN

    surge
    spike

    Sharp high voltage increase (lasting up to 1mSec).
    [ http://www.upsonnet.com/UPS-Glossary/]

    Параллельные тексты EN-RU

    The Line-R not only adjusts voltages to safe levels, but also provides surge protection against electrical surges and spikes - even lightning.
    [APC]

    Автоматический регулятор напряжения Line-R поддерживает напряжение в заданных пределах и защищает цепь от импульсных перенапряжений, в том числе вызванных грозовыми разрядами.
    [Перевод Интент]


    Surges are caused by nearby lightning activity and motor load switching
    created by air conditioners, elevators, refrigerators, and so on.

    [APC]


    ВОПРОС: ЧТО ЯВЛЯЕТСЯ ИСТОЧНИКОМ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ И ПОМЕХ?

    Основных источников импульсов перенапряжений - всего два.
    1. Переходные процессы в электрической цепи, возникающие вследствии коммутации электроустановок и мощных нагрузок.
    2. Атмосферный явления - разряды молнии во время грозы

    ВОПРОС: КАК ОПАСНОЕ ИМПУЛЬСНОЕ ПЕРЕНАПРЯЖЕНИЕ МОЖЕТ ПОПАСТЬ В МОЮ СЕТЬ И НАРУШИТЬ РАБОТУ ОБОРУДОВАНИЯ?

    Импульс перенапряжения может пройти непосредственно по электрическим проводам или шине заземления - это кондуктивный путь проникновения.
    Электромагнитное поле, возникающее в результате импульса тока, индуцирует наведенное напряжение на всех металлических конструкциях, включая электрические линии - это индуктивный путь попадания опасных импульсов перенапряжения на защищаемый объект.

    ВОПРОС: ПОЧЕМУ ПРОБЛЕМА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ ОСТРО ВСТАЛА ИМЕННО В ПОСЛЕДНЕЕ ВРЕМЯ?

    Эта проблема приобрела актуальность в связи с интенсивным внедрением чувствительной электроники во все сферы жизни. Учитывая возросшее количество информационных линий (связь, телевидение, интернет, ЛВС и т.д.) как в промышленности, так и в быту, становится понятно, почему защита от импульсных перенапряжений и приобрела сейчас такую актуальность.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


     

    Защита от импульсного перенапряжения. Ограничитель перенапряжения - его виды и возможности

    Перенапряжением называется любое превышение напряжения относительно максимально допустимого для данной сети. К этому виду сетевых помех относятся как перенапряжения связанные с перекосом фаз достаточно большой длительности, так и перенапряжения вызванные грозовыми разрядами с длительностью от десятков до сотен микросекунд. Методы и средства борьбы зависят от длительности и амплитуды перенапряжений. В этом отношении импульсные перенапряжения можно выделить в отдельную группу.

    Под импульсным перенапряжением понимается кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей с длительностью, как правило, до 1 мс.

    Грозовые разряды - мощные импульсные перенапряжения возникающие в результате прямого попадания молнии в сеть электропитания, громоотвод или импульс от разряда молнии на расстоянии до 1,5 км приводящий к выходу из строя электрооборудования или сбою в работе аппаратуры. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА с длительностью разряда до 1 мС.

    При наличии системы громоотвода импульс разряда распределяется между громоотводом, сетью питания, линиями связи и бытовыми коммуникациями. Характер распределения во многом зависит от конструкции здания, прокладки линий и коммуникаций.

    4957

    Переключения в энергосети вызывают серию импульсных перенапряжений различной мощности, сопровождающуюся радиочастотными помехами широкого спектра. Природа возникновения помех приведена на примере ниже.

    Например при отключении разделительного трансформатора мощностью 1кВА 220\220 В от сети вся запасенная трансформатором энергия "выбрасывается" в нагрузку в виде высоковольтного импульса напряжением до 2 кВ.

    Мощности трансформаторов в энергосети значительно больше, мощнее и выбросы. Кроме того переключения сопровождаются возникновением дуги, являющейся источником радиочастотных помех.

    Электростатический заряд, накапливающийся при работе технологического оборудования интересен тем, что хоть и имеет небольшую энергию, но разряжается в непредсказуемом месте.

    Форма и амплитуда импульсного перенапряжения зависят не только от источника помехи, но и от параметров самой сети. Не существует два одинаковых случая импульсного перенапряжения, но для производства и испытания устройств защиты введена стандартизация ряда характеристик тока, напряжения и формы перенапряжения для различных случаев применения.

    Так для имитации тока разряда молнии применяется импульс тока 10/350 мкс, а для имитации косвенного воздействия молнии и различных коммутационных перенапряжений импульс тока с временными характеристиками 8/20 мкс.

    Таким образом, если сравнить два устройства с максимальным импульсным током разряда 20 кА при 10/ 350 мкс и 20 кА при импульсе 8/20 мкс у второго, то реальная "мощность" первого примерно в 20 раз больше.
     

    Существует четыре основных типа устройств защиты от импульсного перенапряжения:

    1. Разрядник
    Представляет собой ограничитель перенапряжения из двух токопроводящих пластин с калиброванным зазором. При существенном повышении напряжения между пластинами возникает дуговой разряд, обеспечивающий сброс высоковольтного импульса на землю. По исполнению разрядники делятся на воздушные, воздушные многоэлектродные и газовые. В газовом разряднике дуговая камера заполнена инертным газом низкого давления. Благодаря этому их параметры мало зависят от внешних условий (влажность, температура, запыленность и т.д.) кроме этого газовые разрядники имеют экстремально высокое сопротивление (около 10 ГОм), что позволяет их применять для защиты от перенапряжения высокочастотных устройств до нескольких ГГц.

    При установке воздушных разрядников следует учитывать выброс горячего ионизированного газа из дуговой камеры, что особенно важно при установке в пластиковые щитовые конструкции. В общем эти правила сводятся к схеме установки представленной ниже.

    Типовое напряжение срабатывания в для разрядников составляет 1,5 - 4 кВ (для сети 220/380 В 50 Гц). Время срабатывания порядка 100 нс. Максимальный ток при разряде для различных исполнений от 45 до 60 кА при длительности импульса 10/350 мкс. Устройства выполняются как в виде отдельных элементов для установки в щиты, так и в виде модуля для установки на DIN - рейку. Отдельную группу составляют разрядники в виде элементов для установки на платы с токами разряда от 1 до 20 кА (8/20 мкс).

    2. Варистор
    Керамический элемент, у которого резко падает сопротивление при превышении определенного напряжения. Напряжение срабатывания 470 - 560 В (для сети 220/380 В 50 Гц).

    Время срабатывания менее 25 нс. Максимальный импульсный ток от 2 до 40 кА при длительности импульса 8/20 мкс.

    Устройства выполняются как в виде отдельных элементов для установки в радиоаппаратуру, так и в виде DIN - модуля для установки в силовые щиты.

    3. Разделительный трансформатор
    Эффективный ограничитель перенапряжения - силовой 50 герцовый трансформатор с раздельными обмотками и равными входным и выходным напряжениями. Трансформатор просто не способен передать столь короткий высоковольтный импульс во вторичную обмотку и благодаря этому свойству является в некоторой степени идеальной защитой от импульсного перенапряжения.

    Однако при прямом попадании молнии в электросеть может нарушиться целостность изоляции первичной обмотки и трансформатор выходит из строя.

    4. Защитный диод
    Защита от перенапряжения для аппаратуры связи. Обладает высокой скоростью срабатывания (менее 1 нс) и разрядным током 1 кА при токовом импульсе 8/20 мкс.

    Все четыре выше описанные ограничителя перенапряжения имеют свои достоинства и недостатки. Если сравнить разрядник и варистор с одинаковым максимальным импульсным током и обратить внимание на длительность тестового импульса, то становится ясно, что разрядник способен поглотить энергию на два порядка больше, чем варистор. Зато варистор срабатывает быстрее, напряжение срабатывания существенно ниже и гораздо меньше помех при работе.

    Разделительный трансформатор, при определенных условиях, имеет безграничный ресурс по защите нагрузки от импульсного перенапряжения (у варисторов и разрядников при срабатывании происходит постепенное разрушение материала элемента), но для сети 100 кВА требуется трансформатор 100кВА (тяжелый, габаритный и довольно дорогой).

    Следует помнить, что при отключении первичной сети трансформатор сам по себе генерирует высоковольтный выброс, что требует установки варисторов на выходе трансформатора.

    Одной из серьезных проблем в процессе организации защиты оборудования от грозового и коммутационного перенапряжения является то, что нормативная база в этой области до настоящего времени разработана недостаточно. Существующие нормативные документы либо содержат в себе устаревшие, не соответствующие современным условиям требования, либо рассматривают их частично, в то время как решение данного вопроса требует комплексного подхода. Некоторые документы в данный момент находятся в стадии разработки и есть надежда, что они вскоре выйдут в свет. В их основу положены основные стандарты и рекомендации Международной Электротехнической Комиссии (МЭК).

    [ http://www.higercom.ru/products/support/upimpuls.htm]
     


     

    Чем опасно импульсное перенапряжение для бытовых электроприборов?

    Изоляция любого электроприбора рассчитана на определенный уровень напряжения. Как правило электроприборы напряжением 220 – 380 В рассчитаны на импульс перенапряжения около 1000 В. А если в сети возникают перенапряжения с импульсом 3000 В? В этом случае происходит пробои изоляции. Возникает искра – ионизированный промежуток воздуха, по которому протекает электрический ток. В следствии этого – электрическая дуга, короткое замыкание и пожар.

    Заметьте, что прибой изоляции может возникнуть, даже если у вас все приборы отключены от розеток. Под напряжением в доме все равно останутся электропроводка, распределительные коробки, те же розетки. Эти элементы сети также не защищены от импульсного перенапряжения.

    Причины возникновения импульсного перенапряжения.

    Одна из причин возникновения импульсных перенапряжений это грозовые разряды (удары молнии). Коммутационные перенапряжения которые возникают в результате включения/отключения мощной нагрузки. При перекосе фаз в результате короткого замыкания в сети.

    Защита дома от импульсных перенапряжений

    Избавиться от импульсных перенапряжений - невозможно, но для того чтобы предотвратить пробой изоляции существуют устройства, которые снижают величину импульсного перенапряжения до безопасной величины.

    Такими устройствами защиты являются УЗИП - устройство защиты от импульсных перенапряжений.

    Существует частичная и полная защита устройствами УЗИП.

    Частичная защита
    подразумевает защиту непосредственно от пробоя изоляции (возникновения пожара), в этом случае достаточно установить один прибор УЗИП на вводе электрощитка (защита грубого уровня).

    При полной защите
    УЗИП устанавливается не только на вводе, но и возле каждого потребителя домашней электросети (телевизора, компьютера, холодильника и т.д.) Такой способ установки УЗИП дает более надежную защиту электрооборудованию.

    [ Источник]
     

    Тематики

    EN

    3.1.24 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.35 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > импульсное перенапряжение

  • 10 альтернативный сплайсинг

    [франц. alternative, от лат. alter — один из двух; англ. splice — сращивать, соединять]
    непоследовательное в плане расположения в гене лигирование нуклеотидных последовательностей РНК-предшественника, транскрибированных с экзонов и интронов гена, с образованием зрелой мРНК, которая по структуре и кодируемой ею инфор мации отличается от обычной, нормальной. В результате А.с. один ген может кодировать несколько различных по структуре и функции белков. В среднем каждый ген человека способен обеспечивать синтез трех различных мРНК (т.е. кодировать 2—3 отличающихся друг от друга белка); напр., в результате А.с. первичного продукта транскрипции гена кальцитонина образуются две разных мРНК, одна из которых накапливается в щитовидной железе и обеспечивает синтез кальцитонина, а другая — в гипоталамусе, где кодирует синтез пептида, родственного кальцитонину, но отличающегося от него по функции.

    Толковый биотехнологический словарь. Русско-английский. > альтернативный сплайсинг

  • 11 аналитическая ситуация

    В широком смысле сокращенное обозначение психоанализа во всех его проявлениях и аспектах. Здесь мы применяем его в более узком смысле, соотнося с методом или процедурой понимания бессознательного на основе использования сновидений и ассоциаций, посредством чего распознаются дериваты Оно, Я и Сверх-Я, конфликт и последующие компромиссные образования. Анализ используется и как метод исследования, и как метод терапии в собственно психоанализе, описанном ниже, и в аналитической психотерапии.
    Кратко говоря, анализ происходит в определенной ситуации, в определенное время и с определенной частотой (аналитическая ситуация). От других методов психотерапии, также предполагающих взаимоотношения между аналитиком и пациентом один на один, анализ отличается специфическими требованиями и ограничениями. Пациент должен принять положение, при котором аналитик ему не виден, и пытаться свободно делиться всеми без исключения мыслями и чувствами, которые возникают в сознании (свободные ассоциации), отказавшись от критического и логического отбора материала, что приветствуется в обычной социальной ситуации. Пациент часто переживает сенсорную и эмоциональную депривацию, когда — если это соответствует ситуации — аналитик хранит молчание и кажется безучастным. Такая обстановка и процедура дают начало аналитическому процессу, способствующему возникновению у пациента временной регрессии, при которой пробуждаются прежде бессознательные (вытесненные) воспоминания, запретные детские желания и фантазии. Выраженные в производной форме в сновидениях пациента и его ассоциациях по поводу текущих мыслей и событий, они также фокусируются на личности аналитика (перенос). Этот процесс облегчается относительно нейтральной и анонимной позицией аналитика, и формируется невроз переноса — своеобразная "новая редакция" детского невроза. Невроз переноса, возникающий в аналитическом процессе, позволяет аналитику понять, какие чувства и установки пациента являют собой остатки прежних впечатлений и травм; в таком случае аналитик способен реконструировать более ранние уровни развития и связанные с ними аффекты, конфликты и компромиссные образования. Аналитик интерпретирует их, доводя тем самым до сознания пациента. Они прорабатываются, их последствия модифицируются путем интеграции прошлого с настоящим, и тем самым в той или иной степени аннулируются патологические проявления прежних бессознательных конфликтов. При этом, однако, пациент остается привязанным к чувствам и формам поведения, имеющим для него определенную значимость. Вместе с тем пациенты стараются удержать значимые для них паттерны чувств и поведения, и работа аналитика не может осуществляться без определенного сопротивления, которому способствует сам феномен переноса. Продолжать работу в условиях собственного сильного сопротивления пациенту помогает терапевтический или рабочий альянс между анализируемым и аналитиком, основанный на взаимном доверии и общих целях.
    Благодаря распознанию конфликта и прояснению последующих защит и сопротивления по отношению к восприятиям и воспоминаниям (что обусловливает бессознательность того или иного поведения) обогащается личность пациента. Предполагается, что задействованная в конфликте психическая энергия высвобождается и нейтрализуется, становясь доступной синтетической и интегративной функции Я. Соблюдение требования физической пассивности пациента во время аналитического сеанса облегчает перенос энергии из моторной сферы поведения в психическую, благодаря чему улучшается способность анализируемого терпеть, ждать и выдерживать фрустрацию соответственно требованиям реальности. Это помогает пациенту достичь соответствующего равновесия между работой и восстановлением, между потребностью любить и быть любимым.
    Аналитический процесс, представленный нами, включает три фазы: 1) организация аналитической ситуации; 2) возникновение и интерпретация невроза переноса; 3) проработка конфликта, сопротивления и переноса на заключительной фазе. Технические условия, обеспечивающие этот процесс, описываются в рубрике "Аналитическая техника". Во всех трех фазах присутствуют некоторые моменты, не являющиеся специфическими для психоанализа и существующие в структуре различных типов индивидуальной психотерапии. Однако только в классическом психоанализе сеанс и сам метод специально направлены на поощрение такого типа и уровня регрессии, который завершается повторным аффективно заряженным проявлением неразрешенных детских конфликтов во взаимоотношениях пациента и аналитика. Аналитическая ситуация предполагает некую стабильную систему, внутри которой пациент и аналитик взаимно мобилизуют интрапсихические процессы, которые побуждают пациента к движению, инсайту, изменению по мере того, как возникающее в нем напряжение отслеживается и интерпретируется аналитиком. Таким образом, животворными факторами процесса являются взаимодействие пациента с аналитиком, способы аналитического понимания (включая эмпатию и контрперенос), а также возрастающая способность пациента осознавать собственные бессознательные психические процессы (аналитический инсайт). Достижение анализируемым все более высокого уровня инсайтов, саморегуляции и зрелости путем субъективного переживания невроза переноса и его интерпретации в аналитической ситуации может рассматриваться как суть аналитического процесса.
    \
    Лит.: [41, 270, 480, 763, 826]

    Словарь психоаналитических терминов и понятий > аналитическая ситуация

  • 12 неисправность

    1. trouble
    2. shutdown
    3. problem
    4. malfunction
    5. layup
    6. health problem
    7. fouling
    8. faultiness
    9. fault
    10. failure occurrence
    11. failure
    12. fail
    13. disturbance
    14. disrepair
    15. disease
    16. defect
    17. bug
    18. breaking
    19. breakdown
    20. breakage
    21. abortion
    22. abort
    23. abnormality

     

    неисправность
    отказ в работе

    Состояние машины, характеризующееся неспособностью выполнять заданную функцию, исключая случаи проведения профилактического технического обслуживания, других запланированных действий или недостаток внешних ресурсов (например, отключение энергоснабжения).
    Примечание 1
    Неисправность часто является результатом повреждения самой машины, однако она может иметь место и без повреждения.
    Примечание 2
    На практике термины «неисправность», «отказ» и «повреждение» часто используются как синонимы.
    [ ГОСТ Р ИСО 12100-1:2007]

    неисправность

    Состояние оборудования, характеризуемое его неспособностью выполнять требуемую функцию, исключая профилактическое обслуживание или другие планово-предупредительные действия, а также исключая неспособность выполнять требуемую функцию из-за недостатка внешних ресурсов.
    Примечание - Неисправность часто является следствием отказа самого оборудования, но может существовать и без предварительного отказа.
    [ГОСТ ЕН 1070-2003]

    неисправность
    Состояние технического объекта (элемента), характеризуемое его неспособностью выполнять требуемую функцию, исключая периоды профилактического технического обслуживания или другие планово-предупредительные действия, или в результате недостатка внешних ресурсов.
    Примечания
    1 Неисправность является часто следствием отказа самого технического объекта, но может существовать и без предварительного отказа.
    2 Английский термин «fault» и его определение идентичны данному в МЭК 60050-191 (МЭС 191-05-01) [1]. В машиностроении чаще применяют французский термин «defaut» или немецкий термин «Fehler», чем термины «panne» и «Fehlzusstand», которые употребляют с этим определением.
    [ ГОСТ Р ИСО 13849-1-2003]

    Тематики

    EN

    DE

    FR

    3.16 неисправность (fault): Состояние объекта, характеризующееся неспособностью исполнять требуемую функцию, исключая время профилактического технического обслуживания или других запланированных действий, или простои из-за недостатка внешних ресурсов

    Примечание - Неисправность часто является результатом отказа объекта, но может существовать и без отказа.

    Источник: ГОСТ Р 51901.6-2005: Менеджмент риска. Программа повышения надежности оригинал документа

    3.6 неисправность (fault): Состояние элемента, характеризующееся неспособностью исполнять требуемую функцию, исключая период технического обслуживания, ремонта или других запланированных действий, а также из-за недостатка внешних ресурсов.

    Примечание - Неисправность часто является результатом отказа элемента, но может существовать и без предшествующего отказа.

    Источник: ГОСТ Р 51901.5-2005: Менеджмент риска. Руководство по применению методов анализа надежности оригинал документа

    3.5 неисправность (fault): Состояние объекта, когда один из его элементов или группа элементов проявляют признаки деградации или нарушения работы, что может привести к отказу машины.

    Примечания

    1 Неисправность часто является следствием отказа, но может иметь место и при его отсутствии.

    2 Состояние объекта не рассматривают как неисправное, если оно возникло вследствие запланированных процедур или нехватки внешних ресурсов.

    Источник: ГОСТ Р ИСО 13379-2009: Контроль состояния и диагностика машин. Руководство по интерпретации данных и методам диагностирования оригинал документа

    3.2 неисправность (malfunction): Неспособность оборудования, систем защиты и компонентов выполнять заданные функции.

    Примечания

    1 См. также ГОСТ Р ИСО 12100-1.

    2 В контексте настоящего стандарта неисправность может произойти по целому ряду причин, включая:

    a) изменение характеристик материалов или размеров деталей;

    b) отказ одной (или более) составной части оборудования, систем защиты и компонентов;

    c) воздействие внешних факторов (например, ударов, вибрации, электромагнитных полей);

    d) погрешности или недостатки при разработке (например, ошибки программного обеспечения);

    e) помехи от сети питания или иных коммуникаций;

    f) потерю управления оператором (особенно в случае применения ручных и передвижных машин).

    Источник: ГОСТ Р ЕН 1127-1-2009: Взрывоопасные среды. Взрывозащита и предотвращение взрыва. Часть 1. Основополагающая концепция и методология

    3.27 неисправность (malfunction): Неспособность оборудования, систем защиты и компонентов выполнять заданные функции (см. также ГОСТ Р ИСО 12100-1).

    Примечание 1 - В контексте настоящего стандарта неисправность может произойти по целому ряду причин, включая:

    - изменение характеристик материалов или размеров деталей;

    - отказ одной (или более) составной части оборудования, систем защиты и компонентов;

    - воздействие внешних факторов (например ударов, вибрации, электромагнитных полей);

    - погрешности или недостатки при разработке (например ошибки программного обеспечения);

    - помехи от сети питания или иных коммуникаций;

    - потерю управления оператором (особенно в случае применения ручных и передвижных машин).

    Источник: ГОСТ Р ЕН 1127-2-2009: Взрывоопасные среды. Взрывозащита и предотвращение взрыва. Часть 2. Основополагающая концепция и методология (для подземных выработок)

    3.4 неисправность (malfunction): Неспособность оборудования, защитных систем и компонентов выполнять заданные функции.

    Примечание - В контексте настоящего стандарта это может произойти по целому ряду причин, включая:

    - изменение характеристик материалов или размеров деталей;

    - отказ одной (или более) составной части оборудования, систем защиты и компонентов;

    - воздействие внешних факторов (например ударов, вибрации, электромагнитных полей);

    - погрешности или недостатки при разработке (например ошибки программного обеспечения);

    - помехи от сети питания или иных коммуникаций;

    - потерю управления оператором (особенно в случае применения ручных и передвижных машин).

    Источник: ГОСТ Р ЕН 13463-1-2009: Оборудование неэлектрическое, предназначенное для применения в потенциально взрывоопасных средах. Часть 1. Общие требования

    3.9 неисправность (breaking): Вращение мешалки с большой скоростью или рывками, которое происходит вследствие расплавления пробы угля и образования сплошной массы вокруг вала мешалки и лопастей. Это делает определение истинного значения текучести невозможным.

    Источник: ГОСТ Р 54247-2010: Уголь каменный. Определение пластических свойств на пластометре Гизелера оригинал документа

    3.3 неисправность (fault): Состояние объекта, при котором он не способен выполнять требуемую функцию, за исключением такой неспособности при техническом обслуживании или других плановых мероприятиях или вследствие нехватки внешних ресурсов.

    Примечания

    1 Неисправность часто является следствием отказа объекта, но может иметь место и без него.

    2 В настоящем стандарте термин «неисправность» используется наряду с термином «отказ» по историческим причинам.

    Источник: ГОСТ Р 51901.12-2007: Менеджмент риска. Метод анализа видов и последствий отказов оригинал документа

    3.2 неисправность (fault): Состояние объекта, когда один из его элементов или группа элементов проявляет признаки деградации или нарушения работы, что может привести к отказу машины.

    Примечание - Неисправность может привести к отказу.

    Источник: ГОСТ Р ИСО 17359-2009: Контроль состояния и диагностика машин. Общее руководство по организации контроля состояния и диагностирования оригинал документа

    Русско-английский словарь нормативно-технической терминологии > неисправность

  • 13 вирусы

    Частицы, содержащие нуклеиновые кислоты, белки, а иногда и липиды и способные размножаться лишь в клетке-хозяине. Вне клетки вирусы существуют в виде вирусной частицы (см. также вирион), которая состоит из нуклеиновой кислоты и белковой оболочки (см. также капсид и бактериофаги).

    Группа вирусов, вызывающих ряд заболеваний человека (острый катар дыхательных путей, конъюнктивиты, энтероколиты и другие); первоначально были выделены из аденоидов.

    Первый этап инфицирования. Адсорбция происходит на специфических рецепторных участках клеточной поверхности, которые узнаются особыми выступающими частями вириона и к которым он прикрепляется.

    Класс вирусов, покрытых оболочкой, вызывающих такие заболевания, как энцефалит и жёлтая лихорадка.

    вирусы бактерий — bacterial virus, bacteriophage

    Бактериофаги – вирусы, размножающиеся в бактериальных клетках. Бактериофаги широко распространены в природе, их выделяют из воды, почвы, организмов различных животных и человека. Основная масса бактериофагов – это ДНК-содержащие вирусы. Геномная ДНК бактериофагов может быть однонитевой и двухнитевой, линейной, кольцевой или суперскрученной. В современной классификации вирусы бактерий распределены на 13 семейств и один неклассифицированный род.

    Икосаэдр, окруженный оболочкой, образуемой из внутренней ядерной мембраны клетки-хозяина. Вирусы герпеса размножаются в ядрах клеток; капсиды новых вирусных частиц одеваются оболочкой из ядерной мембраны, «отпочковываются» от ядра и выводятся наружу по системе эндоплазматического ретикулума.

    Нуклеокапсид, окружённый оболочкой – фрагментом мембраны клетки-хозяина. Вирусы размножаются внутри клеток. Существует много разновидностей вируса гриппа. Вид ткани, поражаемой этим вирусом, зависит от его специфичности к клеткам хозяев и от рецепторных свойств клеток. Вирус гриппа может вызвать нарушение клеточного метаболизма или даже гибель клетки. Кроме того, он действует как антиген и стимулирует образование антител в организме хозяина. Вирусы гриппа, ответственные за большие эпидемии гриппа, отличаются друг от друга по своей вирулентности и патогенности.

    Вирусы, размножающиеся только в присутствии вируса-помощника.

    Вирусы, геном которых представлен ДНК.

    ДНК-содержащие вирусы, капсид которых имеет форму икосаэдра.

    Вирусы, ингибирующие действие других вирусов при инфицировании одной клетки.

    Вирусы, развитие которых подавлено заражением клетки другим вирусом.

    Вирусы, находящиеся в клетке-хозяине в неактивном состоянии; при индуцировании активности начинают размножаться, вызывая заболевание.

    Вирусы, которые стали профагами; умеренные фаги; фаги, которые заражают бактерий-хозяев, но не размножаются в них автономно и не вызывают лизиса.

    Форма существования вируса в клетке хозяина, не обнаруживаемая вирусологическими методами.

    Вирусы растений, передаваемые при механическом повреждении растения непосредственно ротовыми частями насекомого.

    Вирусы, не способные синтезировать функциональные белки, их нуклеиновая кислота не может реплицироваться (см. также репликация) автономно.

    Вирусы, переносящие онкоген, который может встраиваться в генетические элементы инфицированной клетки-хозяина. Как РНК-вирусы, так и ДНК-вирусы могут быть онкогенными. Онкогенные вирусы могут также индуцировать трансформацию клетки in vitro.

    вирус опоясывающего лишая — herpes zoster virus, girdle virus

    Опоясывающий лишай возникает в результате реактивации вируса ветряной оспы.

    вирус оспы ветряной — chickenpox virus, varicella virus

    Полиэдрический вирус с наружной оболочкой, вызывает ветряную оспу – относительно лёгкую детскую болезнь. Вирус инфицирует верхние дыхательные пути, разносится кровью по всему телу и, закрепляясь в коже, вызывает образование пузырьков.

    вирус оспы натуральной — smallpox virus, variola virus

    Наиболее крупный из зоопатогенных вирусов. Вирионы содержат ДНК, белок и несколько липидов; они очень устойчивы к высыханию и поэтому чрезвычайно патогенны.

    Вирусы растений, размножающиеся в пищеварительном тракте насекомого и заражающие растение лишь после некоторого инкубационного периода в насекомом.

    Вирусы, имеющие кубическую симметрию (например, вирус полиомиелита).

    Вирус, геном которого способен восполнить путём комплементации метаболическую или морфогенетическую функцию, отсутствующую у дефектного вирусного генома.

    Вирусы растений широко распространены в природе, вызывая болезни растений разных видов. Первый открытый вирус, вирус мозаичной болезни табака (ВТМ), повреждает листья растений этого вида. Помимо ВТМ широко известны вирусы некроза табака, жёлтой карликовости картофеля, жёлтой мозаики репы, а также вирусы, поражающие многие другие культурные и дикие растения. Форма вирусов растений в основном бывает палочковидной и округлой. Вирусы растений передаются от больных растений к здоровым через физический контакт между растениями, прививки растений, через почву, а также переносятся насекомыми. Вирусные болезни растений приносят значительный ущерб сельскому хозяйству.

    Вирус, у которого генетическая информация закодирована в РНК.

    Спонтанная сборка вируса.

    Вирусные частицы, неспособные строить капсиды самостоятельно. Крайняя форма вирусного паразитизма. Это вирусы, паразитирующие на генных продуктах, образованных другими, часто неродственными вирусами. Вирусы-сателлиты широко распространены среди вирусов растений.

    Формирование вируса из его компонентов в клетке-хозяине.

    вирус, способный размножаться в различных тканях versatile virus

    Вирус, промежуточный между умеренным и вирулентным.

    вирус табачной мозаики — tobacco mosaic virus, TMV

    Палочковидный РНК-содержащий вирус растений со спиральной симметрией, инфицирующий растения рода Nicotiana, а также других из семейства Паслёновые.

    фильтрующиеся вирусы — filtrable viruses, filter passers, filter-passing viruses

    Вирусы, проходящие через бактериальные фильтры.

    Вирусы, вызывающие различные заболевания растений; попадают внутрь растительных клеток через повреждения, а не в результате активного внедрения.

    Русско-английский словарь терминов по микробиологии > вирусы

  • 14 мутация

    Естественное или искусственно вызываемое стойкое изменение наследственных структур, ответственных за хранение генетической информации и её передачу от клетки к клетке, от предка к потомку.

    Мутация, приводящая к терминации полипептидной цепочки.

    Одновременное мутирование группы смежных генов.

    Мутация, вызванная мутагенным фактором.

    Изменение числа хромосом.

    Мутация, приводящая к нерегулируемому синтезу нескольких функционально связанных ферментов.

    Мутация, при которой утрачивается функциональная активность какого-либо жизненно важного для клетки фермента, в результате чего она погибает.

    Мутация с изменением смысла, ведёт к замещению одной аминокислоты другой в результате такого изменения последовательности оснований, которое не приводит к образованию синонимичного кодона.

    Изменение в нуклеотидной последовательности, которое приводит к образованию синонимичного кодона, и в результате аминокислотная последовательность кодируемого белка не изменяется.

    обратная мутация — back mutation, return mutation

    Мутация, завершающаяся возвратом от мутантного фенотипа к исходному.

    У фага, супрессор-чувствительная мутация, блокирующая транскрипцию благодаря присутствию бессмысленного кодона UAA, называемого ochre-кодоном (см. также амбер-мутация).

    Сходные мутации у особей разных видов одного рода.

    Одна мутация, вызывающая изменение нескольких фенотипических характеристик.

    Мутация, оказывающая влияние на соседние гены, расположенные в противоположную от оператора сторону. Мутация одного гена, влияющая на экспрессию соседнего немутантного гена только в одну сторону.

    Мутация от дикого типа к мутантному состоянию.

    Мутация в многоядерной клетке с утратой функции.

    Частота, с которой происходит мутация в данном организме или гене.

    Мутация, обусловленная удалением ( делецией) одного или большего числа оснований в последовательности, так что при этом изменяется рамка считывания; приводит к изменению аминокислотной последовательности белка от точки мутации до C-конца молекулы.

    Распределение частоты мутаций по разным генам.

    Изменение гена, возникающее по неконтролируемым причинам; естественно происходящая мутация.

    Изменение линейного порядка генов.

    Мутация, отменяющая эффект ранее возникшей мутации, т. е. приводящая к реверсии (см. также реверсия).

    Изменение в ДНК, характеризующееся заменой одной пары азотистых оснований в кодоне.

    Мутация, вызванная у микроорганизмов действием ультрафиолетового света ( 200-300 нм); обратима фотореактивацией под воздействием ультрафиолетового света с большой длиной волны и видимого света.

    Мутация, которая убивает организм при одних условиях окружающей среды ( рестриктивные условия), но не является летальной при других ( пермиссивные условия).

    частота мутаций — mutation rate, mutation frequency

    Количество клеток в группе, проявляющих мутацию по данному гену.

    Мутация, фенотип которой супрессируется в генотипе. Фаг, несущий такую мутацию, может давать потомство, когда он инфицирует один штамм клеток хозяина (несущий ген-супрессор – пермиссивные условия), но не способен давать потомство при инфицировании другого штамма клеток хозяина (ген-супрессор отсутствует – рестрикционные условия).

    чувствительная к температуре мутация — temperature-sensitive mutation, ts-mutation

    Мутация, приводящая к появлению гена, функционирующего при низкой ( высокой) температуре, но неактивного при более низкой ( высокой) температуре.

    Русско-английский словарь терминов по микробиологии > мутация

  • 15 бенз(а)пирен

    [араб. benzoaароматический сок и греч. pyren — косточка плода, ядро плода]
    один из наиболее сильных канцерогенов, который способен образовывать устойчивые аддукты ДНК (см. аддукт). Значительные количества Б. содержатся в выхлопных газах двигателей (реактивных и внутреннего сгорания); впервые выделен из каменноугольной смолы в 1933 г.

    Толковый биотехнологический словарь. Русско-английский. > бенз(а)пирен

  • 16 термолизин

    [греч. thermoтепло и греч. lysis — ослабление, освобождение]
    термостабильная протеиназа, фермент класса гидролаз (см. гидролазы), катализирующий гидролиз пептидных связей, образованных гл. обр. остатками гидрофобных аминокислот (изолейцином, лейцином, валином, фенилаланином, метионином, аланином). Т. со значительно меньшими скоростями катализирует гидролиз связей, образованных остатками тирозина, глицина, треонина и серина; не способен расщеплять пептидные связи, образованные с участием остатка пролина. Т. также катализирует реакцию транспептидирования (см. транспептидирование). Т. продуцируется бактерией Bacillus thermoproteolytics. Одна молекула Т. содержит один ион Zn 2+, необходимый для проявления ферментативной активности, и четыре иона Са 2+, ответственных за стабильность фермента. Т. применяют при установлении первичной структуры белков.

    Толковый биотехнологический словарь. Русско-английский. > термолизин

  • 17 депрессивная позиция

    Один из основных этапов развития, наступающий вслед за паранояйльно-шизоидной позицией. В рамках депрессивной позиции происходит интеграция чувств любви и ненависти к объекту, его "хороших" и "плохих" аспектов, других их парциальных репрезентаций (например, "оральная" и "генитальная" мать), а также внешней реальности с интрапсихической реальностью или фантазией. Подобно паранояйльно-шизоидной позиции, депрессивная позиция отображает конфигурацию объектных отношений, тревог и защит, и она не эквивалентна ни одной из постулированных Фрейдом фаз психосексуального развития. Обе позиции возникают под приматом оральности. Кляйн считала, что депрессивная позиция развивается в рудиментарной форме примерно на третьем-четвертом месяцах жизни и сохраняется на протяжении всей жизни индивида. Поскольку материнский объект осознается теперь как целостный объект, Кляйн постулирует, что эдипов конфликт начинает действовать в раннем возрасте. Мать является источником добра и зла, и младенец испытывает чувство беспомощности, зависимости и ревности к ней. Хотя ребенок способен отчасти сдерживать подобные чувства, амбивалентность сохраняется, а тревога смещается в сторону страхов, что агрессивные импульсы в нем самом могут разрушить объект, воспринимаемый теперь как нужный, важный и любимый. Возможность утратить хороший объект посредством такой агрессии вызывает чувство вины. И если основным аффектом паранойяльно-шизоидной позиции является страх преследования, то при депрессивной позиции развивается беспокойство за объект и его благополучие. Интроекция превалирует теперь над проекцией. Поскольку у ребенка развивается способность устранять вред, наносимый в фантазии любимым объектам, он убеждается, что любовь может преобладать над ненавистью к объекту. Фантазии о всемогуществе связаны не только со страхами разрушить объект, но и с попытками справиться с тревогой депрессивной позиции посредством "репарации". Эта концепция предполагает ретроспективное переживание чувства вины в связи со всеми проекциями дурных импульсов по отношению к объекту.
    Идеальным исходом депрессивной позиции, которого полностью достичь никогда не возможно, является необходимый отказ от всемогущего контроля над объектом и признание реальной зависимости. Как только достигается этот момент, появляется благодарность объекту за его роль в сотворении и поддержании жизни ребенка.
    Если депрессивные тревоги настолько велики, что не поддаются преодолению посредством защит, депрессивная позиция может закрепиться и сохраниться на всю жизнь. В таком случае могут быть задействованы маниакальные защиты, состоящие из фантазий о контроле над объектом с чувством превосходства и презрения к объекту, которое предохраняет от зависимости депрессивной позиции. Ребенок может также регрессировать к паранояйльно-шизоидной позиции.

    Словарь психоаналитических терминов и понятий > депрессивная позиция

  • 18 инфантильность

    Хотя Фрейд использовал термин "инфантильный" для обозначения феноменов всего детского периода, инфантильность в современном употреблении относится к периоду первых трех лет жизни. В этот период ребенок переходит от состояния полной психической и физической зависимости к индивидуальному бытию с автономной регуляцией чувствования себя и других, способностью вербального общения и выражения внутренней реальности, независимостью во многих областях психического функционирования. К концу периода инфантильности должны произойти важные достижения в психической структуре: ребенок должен четко дифференцировать репрезентанты себя и объектов и быть способным интегрировать "хорошие" и "плохие" частичные объекты в целостные репрезентации себя и объектов. Также должны произойти дифференциация Я и Оно, развиться защитные механизмы, способные справиться с конфликтными чувствами и побуждениями. Должна появиться способность к формированию компромиссных образований, равно как и способность к продуцированию внутренней тревоги и развитию невротической симптоматики. Такой прогресс вооружает Я способностью интенциональности, сдерживания разрядки, сопротивления регрессии; зарождается толерантность к фрустрации, тревоге и амбивалентности. Ребенок обретает все большую способность справляться со сложными аффективными переживаниями при взаимодействии с одушевленной и неодушевленной средой.
    В период инфантильности происходит быстрая дифференциация и интеграция функций, которая отражает сложное взаимодействие конституциональных данностей, генетически обусловленного созревания и среды (как до, так и после рождения). Существует множество моделей развития ребенка в этот период; хотя в каждой из них акцент делается на чем-то особом, все они основаны на постулате о том, что каждый новый уровень функционирования (выражение аффектов, моторные навыки, сенсорное восприятие и ретенция, контроль побуждений и т.д.) возникает во взаимодействии ребенка со средой. Опыт переживаний организуется во все более сложные паттерны, сначала на физиологическом, а затем на психологическом уровне репрезентации.
    Из этих теоретических систем наиболее важными являются модель сенсомоторного развития Жана Пиаже, принадлежащая Фрейду теория влечений и концептуализация психосексуального развития (вместе с последующими психоаналитическими теориями Я и объектных отношений), модель сепарации-индивидуации Малер, этология человека (изучение наблюдаемого поведения), теория научения, основанные на наблюдении исследования Шпица, Вульф, Эмде, Штерна и др.
    На протяжении первого года генетически обусловленное созревание как детерминанта поведения все более уступает место опыту. Развитие в этот период неравномерно. Наиболее быстрое развитие обозначается как биоповеденческие сдвиги; имеется в виду внезапное возникновение новых способностей и функций, включая новые формы аффективного поведения, отражающие новый уровень психической и физиологической организации.
    Подобные сдвиги проявляются в виде резких изменений в социальной жизни ребенка. Так называемая реакция улыбки (2—3-й месяцы жизни) приводит к более интенсивным и качественно иным взаимодействиям с человеческим окружением, а боязнь незнакомых людей (6—8-й месяцы) указывает на появление способности испытывать страх.
    Третий заметный поведенческий сдвиг наблюдается между восемнадцатым и двадцать четвертым месяцем жизни, когда появляется жест с сигнальным значением "нет", происходит быстрое усвоение языка, развивается автономия, способность к социальным контактам, происходит смещение от сенсомоторного интеллекта к репрезентативному (Пиаже), возникает кризис восстановления (Малер), на смену приходит анальная фаза психосексуального развития (Фрейд). По истечении восемнадцати месяцев возникающее чувство Я проявляется в узнавании ребенком себя в зеркале. Ребенок начинает также говорить о себе в первом лице.
    Один из способов концептуализации сдвигов уровней психической организации заключается в том, что после двух месяцев ребенок вспоминает мать в моменты узнавания; после семи—девяти месяцев — испытывать биологические и психологические потребности; после восемнадцати месяцев мнемическое воспроизведение осуществляется относительно независимо от внешних стимулов и внутренних потребностей. Такие сдвиги в возможностях ребенка делают процесс развития внешне дискретным, поскольку достижение нового уровня интеграции и организации приводят к типу функционирования, прежде недоступному.
    Периоды поведенческих изменений в направлении более сложных уровней организации — это периоды наибольшей уязвимости ребенка к стрессу. Потенциал роста и самоконтроля может уступать место возможности дезорганизации и декомпенсации, причем на то и другое влияет конституциональная предрасположенность. Так, у ребенка, рано научившегося перемещаться в пространстве, будет иной тип объектных отношений, нежели у ребенка, более склонного к сидячему образу жизни и исследующего мир в основном зрительно. Последний может дальше продвинуться в плане индивидуации до начала физической сепарации от опекуна. На уязвимость ребенка к стрессу влияет также среда.
    Перцептивный аппарат ребенка отличается врожденной способностью направлять внимание на частичные объекты (конфигурация человеческого лица, голос матери, запах и т.п.). Такая биологически детерминированная способность, способствующая формированию связи с объектами, проявляется даже в отсутствие связанного с данным объектом опыта кормления или при редукции влечений. Следовательно, ребенок по природе социально интерактивен, ищет как возбуждающей, так и успокаивающей стимуляции и способен стимулировать других (особенно мать), вызывая реакции; таким образом, ребенок может воздействовать на окружение с момента появления на свет. Поскольку развитие является частью системы интеракций, то поведение ребенка и поведение опекуна со временем будут усложняться. Согласно одной из современных гипотез, генетически обусловленное, направленное на объект поведение дает ребенку возможность привлекать к себе внимание матери в период, когда его выживание целиком зависит от нее.
    \
    Лит.: [145, 181, 389]

    Словарь психоаналитических терминов и понятий > инфантильность

  • 19 регрессия

    Термин, обозначающий возврат к менее зрелому уровню психического развития. Как правило, регрессия возникает в ситуации, когда нарушаются процессы психической организации, соответствующие данной фазе развития. При этом регрессия рассматривается как один из механизмов защиты. Концепция регрессии тесно связана с положением о том, что психологическое развитие индивида проходит ряд фаз, каждая из которых характеризуется специфическими особенностями проявлений влечений Я, Я-идеала и Сверх-Я. Становление каждой фазы зависит от: 1) способа разрядки инстинктивных влечений, 2) функционирования Я; 3) присущих индивиду идеалов и проявлений совести.
    Обычно понятие регрессии принято рассматривать в двух аспектах. Либидинозная регрессия (регрессия либидо) представляет собой возвращение к ранним фазам организации инстинктивной жизни, возникающее в ходе нормального развития, когда индивид не способен справиться с требованиями биологически детерминированного процесса достижения большей зрелости. В таких случаях неразрешенные конфликты и тревога, исходящие из более ранних уровней развития, образуют в структуре психического аппарата "слабые места" (фиксации). Последние, как правило, и определяют тот уровень, к которому регрессирует психическая деятельность. В иных случаях регрессия проявляется в ответ на новые для индивида события и ситуации, возникающие в данной фазе развития, но оказывающие явно травматическое воздействие. В детском возрасте, когда развитие сексуальных влечений пока еще неустойчиво, либидинозные формы регрессии являются весьма распространенным механизмом. Так, например, пятилетний ребенок под влиянием стресса (соперничества с младшим братом или сестрой) прибегает к сосанию пальца, то есть к такому способу самоуспокоения, который он уже давно отбросил и позабыл.
    Другой тип регрессии — регрессия Я — представляет собой отход от более развитых и зрелых стадий психической организации к способам деятельности, характерным для более ранних периодов жизни. Хотя регрессия Я проявляется чаще всего вместе с либидинозной, первая из них сказывается прежде всего на вовлеченных в конфликт функциях Я. Регрессия Я проявляется в виде формальных характеристик процессов воображения, сопряженных с теми или иными дериватами конфликта влечений. Наиболее распространенными примерами регрессии этого типа являются утрата ребенком контроля над функциями мочевого пузыря, нарушения речи в ответ на выраженную стрессовую ситуацию и некоторые другие.
    В определенных случаях (чаще всего у пациентов-мазохистов) может наблюдаться и регрессия Сверх-Я. Нередко регрессия этого типа являет собой специфический ответ на ситуацию, когда интернализированный авторитет родителей вновь экстернализируется, затем проецируется на аналитика, рассматриваемого пациентом в качестве садистской фигуры в процессе переноса.
    Причины регрессии разнообразны. Некоторые ее формы встречаются в норме (как в детском, так и в зрелом возрасте) и рассматриваются как реакция на потребности индивида, которые подвергаются внешнему или внутреннему "давлению". Будучи неотъемлемой частью "колебательного" процесса развития, регрессия может способствовать переработке и последующей реинтеграции психического материала на более высоком уровне. В зрелом возрасте некоторые состояния могут служить запускающими механизмами для проявления архаических инстинктивных и поведенческих аспектов душевной жизни. К числу подобных состояний принято относить сновидения, любовь и вражду.
    Регрессия является одним из наиболее важных элементов психодинамического процесса. Именно она, возвращая пациента в более ранние и тем самым менее зрелые фазы психической организации, позволяет ему заново перерабатывать при переносе неразрешенные конфликты. Проявления регрессии усиливаются при возникновении разных состояний и расстройств: в случае чувства тревоги, вины, стыда, при депрессии, фрустрации или нарциссической обиде, выраженной астении, физических перегрузках, соматических заболеваниях и пр. Патологическая регрессия встречается при неврозах, психозах и перверсиях. В качестве основного динамического фактора регрессии выступает неразрешенный эдипов комплекс в сочетании со страхом кастрации и/или бессознательными сексуальными либо агрессивными побуждениями, провоцирующими чувство вины.
    \
    Лит.: [33, 202, 290, 295, 312, 469, 656]

    Словарь психоаналитических терминов и понятий > регрессия

  • 20 сновиденье

    Сновиденье является нормальным регрессивным психофизиологическим феноменом сна, протекающим циклами по 90 мин. Сновиденье определяется по признаку "быстрого движения глаз" (REM-фаза), возникающему на первой стадии сна. У детей сон является более продолжительным, чем у взрослых; по меньшей мере 50% детского ночного сна занимает REM-фаза и сновиденье. В этой фазе наблюдается эрекция пениса и кровонаполнение клитора; этот признак используется при разграничении органической и психогенной импотенции.
    Тревожные сновидения могут сопровождаться пробуждением в REM-фазе, при этом их содержание не запоминается. Тревожный выход из состояния сна может иметь место в любой из стадий. Сновидения, нарушающие 4-ю стадию сна, часто сопровождаются сомнамбулизмом, говорением во сне, ночными страхами (pavor nocturnus) и редко запоминаются. Забывание сновидений обусловлено как физиологическими особенностями (необходимостью незамедлительного восстановления внимания), так и психологическими факторами (вытеснением, сопротивлением, цензурой). Забытые сновидения удается воскресить в памяти при определенных условиях, например при психоанализе и гипнозе.
    В работе "Толкование сновидений" Фрейд рассматривает феномен скрытого, или латентного, содержания, лежащего в основе сновидений. Попытки проникновения в сущность этого феномена привели Фрейда к наиболее важным теоретическим обобщениям его концепции. Другие исследователи считают, что сновидение является одним из способов решения конфликта — проработкой психотравмирующих переживаний и совладанием с ними, как настоящих, так и детского возраста. Сновидение рассматривается также как особая форма усвоения информации, способствующего совладанию с эмоциональными проблемами.
    Процессы мышления и аффекты представлены в сновидениях в зрительной либо, что значительно реже, в слуховой форме; могут проявляться и другие модальности сенсорного восприятия — осязательные, обонятельные, вкусовые и двигательные. С точки зрения Фрейда, сновиденье и сновидение являются результатом работы сновидения — психологического процесса, характеризующегося архаическими способами мышления, в частности смещением, сгущением и замещением, способствующими переводу скрытого содержания в явное сновидение. Два других элемента работы сновидения — наглядная и символическая репрезентация — представляют собой процесс трансформации мыслей в чувственные (сенсорные) символы и образы. И, наконец, вторичная переработка — соединение разрозненных образов и элементов сновидения и создание единого связного содержания (фабулы, действия). Иногда вторичной переработки не происходит, и тогда сновидение проявляется в виде расчлененных, разорванных или причудливо переплетенных серий образов и фраз.
    Явное содержание сновидения — это то, что способен вспомнить пробудившийся индивид: взаимосвязанные образы, речь, содержание чувственных и аффективных компонентов, а также их формальные аспекты, включающие разделение на отдельные отрезки, комментарии сновидения и т.п. Сновидения на протяжении одной ночи либо одного и того же периода сна связаны единой и последовательной работой мышления; например, разрешение одного конфликта приводит к возникновению проблемы следующего сновидения, либо один и тот же конфликт проходит через всю ночь.
    Процесс образования сновидения обычно рассматривается следующим образом: под воздействием регрессии, релаксации моторной сферы и ослабления сознательной и бессознательной цензуры оживляются архаические функции мышления, проявляющиеся в виде работы сновидения, использующей первичные процессы мышления. Работа сновидения, взаимодействуя с дериватами влечений детского возраста, защитой и связанными с ней конфликтами, а также с возникающими на этой основе представлениями, формирует зрительные образы (сновидения), замещающие собой мысли, порождаемые во время сна.
    Остатки дня или провоцирующие стимулы представляют собой непосредственные источники материала для формирования сновидения (то есть источники в виде безвредных элементов дневного содержания). Если события, впечатления, образы восприятия, мысли, идеи и чувства нескольких предыдущих дней возникают в сновидении как несущественные, то их значение следует искать в глубоко вытесненных влечениях, желаниях и конфликтах раннего детского возраста. Остатки дня связываются с бессознательными детскими влечениями и желаниями эротического и агрессивного характера, маскируя тем самым инфантильные импульсы, стимулирующие образование сновидения. К такой маскировке добавляется процесс искажения (включая вторичную переработку), вызываемый работой сновидения.
    Понятие "экран сна" было введено Бертрамом Левином для описания сновидений, не имеющих четкого и распознаваемого зрительного содержания. Такие сновидения представляют собой "чистый" или "пустой" фон, необязательно воспринимаемый таковым или оживляемый в памяти. Их принято рассматривать как инфантильные сны, символизирующие фигуру матери или грудь. Некоторые авторы считают, что экран сна является фоном или матрицей сновидения; на этом фоне проявляются зрительные содержания, а также элементы бодрствования.
    Фрейд называл сновидения "царской дорогой к бессознательному". Возрастающее значение психологии Я и проблем психоаналитического процесса способствовало тому, что толкование сновидений стало одним из наиболее важных элементов аналитической работы. Использование сновидений в терапии помогает, таким образом, вскрывать бессознательные проявления психического содержания, интегрировать детские фантазии и лежащие в их основе влечения и, наконец, связывать конфликты и защиты со скрытым содержанием, проявляющимся в актуальном поведении и переносе.
    \
    Лит.: [25, 214, 216, 224, 249, 251, 292, 392, 555, 579, 533, 872]

    Словарь психоаналитических терминов и понятий > сновиденье

См. также в других словарях:

  • Один дома — Home Alone Жанр …   Википедия

  • Один на один (книга) — Один на один совместное произведение популярного российского фантаста Ника Перумова и писательницы Полины Каминской. Является продолжением книги Посредник. Сюжет Ветеран принял приближающийся поезд метро за фашистский танк, братьям близнецам… …   Википедия

  • Герой должен быть один — «Герой должен быть один»  роман, написанный в 1995 году Генри Лайоном Олди. Роман представляет собой переосмысление древнегреческих мифов о Геракле. Изначально, как продолжение «Герой должен быть один» был задуман роман «Нам здесь жить», но… …   Википедия

  • Аполлон-15 (Уорден один на орбите) — Приложение к статье Аполлон 15 «Аполлон 15» Полётные данные корабля Ракета носитель Сатурн V SA 510 Стартовая площадка …   Википедия

  • Фракции вселенной Red Alert — Во вселенной Command Conquer: Red Alert изначально присутствовали две фракции Североатлантический Альянс и СССР. Но после временного парадокса на военную арену встала третья сверхдержава Империя Восходяхего Солнца. В этой статье указаны… …   Википедия

  • Альянс (Red Alert) — Североатлантический Альянс Allies Годы существования 1946 неизвестно Страна США, Великобритания, Франция, Германия, Нидерланды, Канада, Греция, Южная Корея и другие... Страны {{{ст …   Википедия

  • Command & Conquer: Red Alert — Command Conquer: Red Alert Разработчик Westwood Studios Издатель Virgin Interactive Дата выпуска Октябрь, 1996 …   Википедия

  • Command \x26 Conquer: Red Alert — Command Conquer: Red Alert Command Conquer: Red Alert Разработчик Westwood Studios Издатель Virg …   Википедия

  • Радикал в химии — (химич. radical, radicale) слово, впервые введенное в научную химическую литературу, по видимому, Гитоном де Морво. В докладе французской Академии наук [ M émoire sur le Développement des Principes de la Nomenclature Mé thodique (18 апр. 1787).… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Радикал, в химии — (химич. radical, radicale) слово, впервые введенное в научную химическую литературу, по видимому, Гитоном де Морво. В докладе французской Академии наук [ Mémoire sur le Développement des Principes de la Nomenclature Méthodique (18 апр. 1787).… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • СИСТЕМАТИКА ЖИВОТНЫХ. ТИПЫ И КЛАССЫ — В современных системах классификации царство животных (Animalia) делят на два подцарства: паразои (Parazoa) и настоящие многоклеточные (Eumetazoa, или Metazoa). К паразоям относится лишь один тип губки. У них нет настоящих тканей и органов,… …   Энциклопедия Кольера

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»